213 research outputs found

    Chemical and magnetic impurity effects on electronic properties of semiconductor quantum wires

    Full text link
    We present a theoretical study of electronic states in magnetic and nonmagnetic semiconductor quantum wires. The effects of chemical and magnetic disorder at paramagnetic temperatures are investigated in single-site coherent potential approximation. It is shown that the nonmagnetic impurity shifts the band of carriers and suppresses the van Hove singularities of the local density of states (LDOS) depending on the value of impurity concentration. The magnetic impurity, however, broadens the band which depends on the strength of exchange coupling, and in the high impurity concentration, the van Hove singularities in the LDOS can completely disappear and the curves become smooth.Comment: 7 pages, 6 figure

    The effect of vacancy-induced magnetism on electronic transport in armchair carbon nanotubes

    Full text link
    The influence of local magnetic moment formation around three kinds of vacancies on the electron conduction through metallic single-wall carbon nanotubes is studied by use of the Landauer formalism within the coherent regime. The method is based on the single-band tight-binding Hamiltonian, a surface Green's function calculation, and the mean-field Hubbard model. The numerical results show that the electronic transport is spin-polarized due to the localized magnetic moments and it is strongly dependent on the geometry of the vacancies. For all kinds of vacancies, by including the effects of local magnetic moments, the electron scattering increases with respect to the nonmagnetic vacancies case and hence, the current-voltage characteristic of the system changes. In addition, a high value for the electron-spin polarization can be obtained by applying a suitable gate voltage.Comment: 6 pages, 6 figure

    The effects of a magnetic barrier and a nonmagnetic spacer in tunnel structures

    Full text link
    The spin-polarized transport is investigated in a new type of magnetic tunnel junction which consists of two ferromagnetic electrodes separated by a magnetic barrier and a nonmagnetic metallic spacer. Based on the transfer matrix method and the nearly-free-electron-approximation the dependence of the tunnel magnetoresistance (TMR) and electron-spin polarization on the nonmagnetic layer thickness and the applied bias voltage are studied theoretically. The TMR and spin polarization show an oscillatory behavior as a function of the spacer thickness and the bias voltage. The oscillations originate from the quantum well states in the spacer, while the existence of the magnetic barrier gives rise to a strong spin polarization and high values of the TMR. Our results may be useful for the development of spin electronic devices based on coherent transport.Comment: 15 pages, 5 figure

    Optical absorption spectrum in disordered semiconductor multilayers

    Full text link
    The effects of chemical disorder on the electronic and optical properties of semiconductor alloy multilayers are studied based on the tight-binding theory and single-site coherent potential approximation. Due to the quantum confinement of the system, the electronic spectrum breaks into a set of subbands and the electronic density of states and hence the optical absorption spectrum become layer-dependent. We find that, the values of absorption depend on the alloy concentration, the strength of disorder, and the layer number. The absorption spectrum in all layers is broadened because of the influence of disorder and in the case of strong disorder regime, two optical absorption bands appear. In the process of absorption, most of the photon energy is absorbed by the interior layers of the system. The results may be useful for the development of optoelectronic nanodevices.Comment: 6 pages, 6 EPS figures, revised versio

    Modeling of gas adsorption on graphene nanoribbons

    Full text link
    We present a theory to study gas molecules adsorption on armchair graphene nanoribbons (AGNRs) by applying the results of \emph{ab} \emph{initio} calculations to the single-band tight-binding approximation. In addition, the effect of edge states on the electronic properties of AGNR is included in the calculations. Under the assumption that the gas molecules adsorb on the ribbon sites with uniform probability distribution, the applicability of the method is examined for finite concentrations of adsorption of several simple gas molecules (CO, NO, CO2_2, NH3_3) on 10-AGNR. We show that the states contributed by the adsorbed CO and NO molecules are quite localized near the center of original band gap and suggest that the charge transport in such systems cannot be enhanced considerably, while CO2_2 and NH3_3 molecules adsorption acts as acceptor and donor, respectively. The results of this theory at low gas concentration are in good agreement with those obtained by density-functional theory calculations.Comment: 7 pages, 6 figure

    Exchange coupling between two ferromagnetic electrodes separated by a graphene nanoribbon

    Full text link
    In this study, based on the self-energy method and the total energy calculation, the indirect exchange coupling between two semi-infinite ferromagnetic strips (FM electrodes) separated by metallic graphene nanoribbons (GNRs) is investigated. In order to form a FM/GNR/FM junction, a graphitic region of finite length is coupled to the FM electrodes along graphitic zigzag or armchair interfaces of width NN. The numerical results show that, the exchange coupling strength which can be obtained from the difference between the total energies of electrons in the ferromagnetic and antiferromagnetic couplings, has an oscillatory behavior, and depends on the Fermi energy and the length of the central region.Comment: 4 pages, 6 figures, International Conference on Theoretical Physics 'Dubna-Nano2008

    Spin-dependent resonant tunneling in ZnSe/ZnMnSe heterostructures

    Full text link
    Using the transfer matrix method and the effective-mass approximation, the effect of resonant states on spin transport is studied in ZnSe/ZnMnSe/ZnSe/ZnMnSe/ZnSe structures under the influence of both electric and magnetic fields. The numerical results show that the ZnMnSe layers, which act as spin filters, polarize the electric currents. Variation of thickness of the central ZnSe layer shifts the resonant levels and exhibits an oscillatory behavior in spin current densities. It is also shown that the spin polarization of the tunneling current in geometrical asymmetry of the heterostructure where two ZnMnSe layers have different Mn concentrations, depends strongly on the thickness and the applied bias.Comment: 13 pages, 6 figure
    • …
    corecore